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We present exact explicit expressions for the row spin-spin correlation functions 
(aooa,0) in the isotropic d =  2 Ising model, in terms of elliptic integrals, for 
n ~ 5. We also give a general structural formula for (cr0ocr,o). 

KEY WORDS:  Ising model; solvable models; correlation functions; series 
expansions. 

The d =  2 Ising model continues to yield new insights into the collective 
behavior of many-particle systems. This model is especially interesting 
because one can calculate many quantities of physical interest in exact, 
analytic form. (1-5)'2 Among these are the (static) spin-spin correlation 
functions (aooamn). Explicit calculations of these have only been published 
for (aooCr01), (0"00(710) and (a00a11). (1-5) Recently, (6) we found a general 
structural formula for S,  = (a00a,,) involving a homogeneous polynomial, 
of degree n, in the complete elliptic integrals E(k~) and K(k~), with 

2 (for the notation, see calculable coefficients comprised of polynomials in k~ 
Reference 6 or below). We also calculated explicit expressions for S~ with 
2 ~ n ~ < 6 .  

Here we give a general structural formula for the row, or equivalently, 
column, correlation functions of the isotropic d = 2 Ising model, defined by 
the Hamiltonian 

H=--  ~ [J1crj,k~j+~,k + JzOj,kCrj,k+l] (1) 
j,k~ Z 2 

I Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, New York 11794. 

2 There is a .vast literature on the d = 2 Ising model; we have cited only the few papers which 
are directly relevant to our calculations. For a detailed discussion of the model and further 
references, see Reference 5. 
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w i t h  e j ,  k = Z~Z 1, EZ  z and J1 = J 2 .  We have also calculated (Ooo,:rno) explicitly 
for n ~< 6 and present the results for n ~< 5 here. We define the elliptic moduli 

k> = sinh 2 2flJ  (2) 

applicable for T > T~ and 

k< = k71 (3) 

applicable for T < T c, with fl = (k B T ) -  1 and T c defined by 

k>(flc) = k<(fl~) -- 1 (4) 

Thus 0 ~ < k ~  1. The correlation function R ,  = (e0oe,0) can be formally 
expressed as a Toeplitz determinant(a): 

a 0 

a l  
R n =  

an 1 

ar=Zl~r,o + (1--  z~) 

a_] ... al_ n 

ao 

where 

with 

and 

a o  

(5) 

X [z,(1 + z~)F0# + (z 2 -  1 ) F o , l + r + 2 z l Z 2 F l , ~ ]  (6) 

z i = tanh flJi (7) 

l f ~ f ~ e  ir176 
F i n " m 2 - -  (270 2 _= &~ = dq~2 A(~o,,~02) (8) 

A(~91, ~02) ---~ (1 ~- Z~)(1 + Z~) -- 2Z2(1 -- Z}) COS q~ 

- -  2 Z l ( 1  - -  2 "2) COS ~01 ( 9 )  

The matrix element a r is more complicated, even for the isotropic case, 
than the analogous quantity in the diagonal case, which has the form 

b r = 4ZaZzFr ,  ~ - (1 - z~)(1 - z 2) F~+ 1 , r + l  (10) 

involving only the diagonal functions Fro, m. This difference gives rise to the 
substantially more complicated structure exhibited by R . ,  even in the 
isotropic case, as compared  with S . .  
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We proceed to give the general structural formulas which we have 
found for the R n a s  explicit polynomials in the complete elliptic integrals of 
the first and second kind. Denote 

Rn, • = <a0,oa,,0)r>r~,r<r ~ (11) 

The general form of R,,•  depends in part on whether n is even or odd, in 
contrast to the diagonal correlation functions S , , •  

Specifically, the forms are 

n/2 21 
n even: R.,• = D . k  -~ ~ 7~ -2I E ~(272~I~(k) 

l=0  r = 0  

X ( k -  1) r E(k) 2'-r K(k) r (12) 

tRn,+ (1 + k~l)  1/2 1 

l 
X Z ~}n-)r, r(k)(k  -- l)r+(1/2)[1-(-1)l]C~r'~ 

r=O 

• E(k) t-r K(k) r (13) 

Here k = k> (k<) for T > T c (T < To); D.  is an inverse integer extracted for 
convenience; q. is a positive sere• integer; ~o~(n'even'+)(k>,<)zt_~,~ and 
~i~ (n ,odd)(b~ t-r,r vw are polynomials in k> or k<,  and K(k) and E(k) are the 
complete elliptic integrals of the first and second kinds, respectively. The 
formulas (12) and (13) are inferred from the Toeplitz determinant (5), using 
the properties of the ar in (6). Specifically, one uses the recurs• relation 
(1 4- z2)2 Fm,n = z(1 -- z2)[Fm+l,n -]- Fm_l ,  n -]- Fm,n+ 1 -]- Fm,n_l]  q- ~)m,O(~n,O, 
where z, = z z ~_z, to obtain the nondiagonal F m ,  n from the diagonal ones. 
The latter are given by Fm,m =- [27cz(1-z2)]-lQm_(1/z)(w), where w =  
(1 + zZ)4/[Sz2(1 - z : )  2] - 1, and Q,,(w) is the (singular) Legendre function 
of the second kind. This function has the form Qm (1/z)(w) = am,E,• 
am,~: ' • K(k), where the a coefficients are algebraic functions of k and k = k> 
or k<, depending on whether T > T~ or T < T~. It follows that Fro, . has the 
form F m ,  n = Cm,n,~, • E(k) + em,n,~, • K(k) + era,,,,,• where the c coefficients 
are again algebraic functions of k (and Cm,,,,1,• = 0 if m = n). This property 
yields the general hierarchical form in (13); further cancellations produce the 
alternative-level structure in (12) for the case of even n. Several interesting 
features of the results are worth noting: 

(1) Even n. (a) Rn, + consists of a hierarchy of polynomials in E(k) 
and K(k) which are homogeneous, of even degree 2l. There are no levels of 
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odd degree, in contrast with the case of Rn.• with n odd. The full hierarchy 
consists of all of the levels 2I-- 0, 2,..., n. 

(b) Each term E(k) 2t-r K(k)  r in one of the homogeneous polynomials 
of a given 2lth level involves a coefficient function, ~.,~(n'+)2t_r,rV~>j (~ ~ or 

(n , - )  ,,,~22t_r,r(k<) for T >  T C or T < Tc, respectively, which is itself a polynomial 
in k~. 

{2} Odd n. (a) The odd-n row correlation functions have a square 
root prefactor. They again involve a hierarchy of homogeneous polynomials 
in E(k) and K(k), but the hierarchy consists of all l levels from l = 0 to l = n 
and not just the even ones. 

(b) As indicated in the notation, the same coefficient polynomial, 
~ ) r , r ( X ) ,  enters for T >  T~ (with x = k > )  and for T <  T~ (with x = k < ) ,  
although there are overall sign changes associated with the ( -1 ) "  t+l factor 
for T <  T c. This differs from the even-n case, where ~(" '+)(~'~ and ~ 21_r ,rV ~1 

~2~'_~Ir(x ) are distinct functions ofx.  

(3) Comparing these results for the row or column correlation 
functions with the general structural formula which we recently found (6) for 
the diagonal correlation functions, Sn, • the most striking contrast is the 
greater complexity of the R. , •  even for the isotropic case studied here. This 
is particularly evident in the hierarchical level structure of the R. ,+.  In this 
terminology, S.,• involves only one l level, namely, the top one, 1---n. A 
related difference is that the. o?(., • - - n - r  are even functions o fk~  while ~(neven'• r,r 

and ~c~"t odd)r,r contain odd as well as even powers of k~. 

(4) Another general structural feature of Rnodd,• is that it does not 
involve any pure E(k) term: 

,~i~(n odd) = 0 (14) 
1,0 

We proceed to derive several relations among the coefficient functions. 
As T--, oo, R,,+ -* c~,, 0, which implies that for the nontrivial case n 4= 0, 

n/2 21 

~(. ,+~ r~ = 0 ) = 0  (15) n even: ~ 2-2t ~ ( - 1 )  r J z  21 . . . .  V~> 
/=0 r=0 

1 
n o d d :  ~ ( - - 2 )  l ~  ( _ _ l ) r ~ f _ ) r , r ( k >  = 0 ) = 0  (16 )  

l=0 r=0 

As T ~ 0 ,  R~_  ~ [sgn(J)] ~, which implies (again, in the nontrivial case 
n :~ 0) that for n even: 

n/2 2l 

)_~ 2 2, ~ ( _ l ) r  ~(2nl,_rlr(k< : 0 )  = 0 (17) 
l--O r--0 

For n odd the condition implied is equivalent to (16). 
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Finally, as T--+ T~, since ( a O O O m n )  is a continuous function of  T, 
R . _ ( T ~ ) = R . , + ( T c ) .  This is automatic for odd n, as is evident from (13). 
For  even n, it implies that 

~ ( n , + ) ( l  .. (n,-  n even: ~ 2t.0 v~> = 1 ) = ~ 2 t , o  )(k< = 1) (18) 

As indicated, this equality holds separately at each level of  the hierarchy. 
Further, writing 

Jmax(n,2l) 
~.~ ( n , •  ) ~ ( n , •  ) L j  2 , , o -  ~ (19) - -  ~ 2 I , j  r~ 

j=0 

we find that 

c("'+)  ~ " '  ) ( 2 0 )  2 l , j  ~ t'Jmax(n,21) j 

so that the equality equivalent to (18) and (19), 

Jmax(n ,2l) Jma• 2/) 
Z ..(n,+) 

~2l,j X cV"-) (21) z 21,j 
j=0 j=0 

is met in the special manner implied by (20); i.e., there is a one-to-one 
equality between the individual terms in the left-hand side of (21) and the 
reordered terms in the right-hand side of  (21). 

c ~ ( n e v e n , •  "t We list below our results for the coefficient functions ~.~ 2z . . . .  w~J 
and ~(n~ V ~) for n = 1 through 3. As stated above, for n odd, ~(,od~)~ l-r,r is 
the same function of  k> for T > T C as it is of  k< for T < T~ ; accordingly, we 
use the symbol k to denote either k> or k<.  The values of  the constants D n 
appearing in (12) and (13) are: D 1 = D  E = D  3 = 1, D 4 = 3 -2 , and D 5 = 3 -4 ;  
the qn are listed in Table I. Results for n = 4, 5 are given in the Appendix. 

Table i. Values of the Powers qn 

n qn 

1 0 
2 1 
3 2 
4 4 
5 6 
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n = l :  

~ * ' o =  o 

~(o1,{ = 1 

._97 (ol,)o = 2-a  

n = 2 :  

T >  T~: 

T <  To: 

J?~z,b + ) = - - 2  2 

~,~2,~+~ = o 

,-~(o2,~+) = 2(k> + 1) 

~(2,+) 2 - 1 ( k > + 1 )  
0 , 0  = 

~ 2 ~ - ,  = _2 2 

Ji~]2,1-' = - 2 a ( k >  + 1) 

~'(o2,1-' = -2 (k> + 1)(k> + 2) 

,_9fl(o2~ - ) =  2-1k>(k> --}- 1) 

n = 3 :  

~ , ( 3 )  _ _ 2 4  
3 , 0  - -  

37~3~ = - 2 Z ( k  2 - 6 k  - 11) 

~ 3 ~  _ 23(k + 1)(3k + 5) 
1 , 2  - -  

:~3~  = 22(~ + 1)2(k + 3) 

~ { 3 ) _  2tk 2 1) 2 , 0 - -  ~ + 6 k +  

~,~3,{ = _22(k + 1)(3k + 1) 

~(3) _ - 2 ( k  + 1) 3 
0 , 2  - -  

:~','o = o 

~.~(03~ = - k ( k  + 1) 2 

~ ( 3 )  _ 2 - 1 k ( k  + 1)2 
0 , 0  - -  

As would be expected, it is much easier to calculate the (O000mn>, and 
in particular, Rn, at the special point T = T  c than to calculate these 
correlation functions in general. Since we have computed the full R .  
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themselves, we list below the critical values (besides the n = 1 value, which is 
well known, {2) the n = 2 value has been given before<7'8)): 

Rn,c- Rn(T= To) 
[sgn(J)]" (22) 

Then 

/~1,~ = 2-1/2 ~ 0.707 (23a) 

/~2,c = 1 -- ~-y = 1 -- 1 + -7- ~- 0.595 (23b) 

(8) 
/~3,c = 23/2 1 - -  ~ ~ 0.536 ( 2 3 c )  

2 4 �9 7 28 ) 
~ , c = 2  4 1 ~ r ~  +-~-~4 

( 22 24)( 22 24) 
= 24 1 3n 3n 2 1 + 3~ ~ ~-0"498 (23d) 

2 3 .  19 2 9 .  11] 
K5,c=21~/2 1 32n2 -~ ~ 4 - ~  

=215/2 ( 1 -  3-8-)(l + - 8 - n ) ( l -  38~8--Tn82) - 0 . 4 7 1  (23e) 

2 2 �9 13 �9 31 21~ �9 7 �9 13 222 ] 
/~6,c = 212 1 3 �9 527r 2 + 33 �9 52 �9 7C 4 36 ~ 527C6 

2" 13 
= 2 12 1 3 �9 5n 

25. 13 11 

32-.'5-~-'2 + 33! ~7C3 ") 

2. 13 25. 13 2 la ) 
X 1 + 3 �9 5-"---~ 32 . 5~ 2 33_-~723 20 .450  (23f)  

In general, 

In/2] 
/ ~ c = ,  ~ r, , tn-2t (24) 

1=0 

with rational coefficients which we denote G,t. The occurrence of only even 
powers of n-1 in the sums is obvious for even n since, according to our 
general formula (12) the hierarchy contains only even-/ levels. For odd n, 
although the hierarchy contains all l levels from l = 0 to l = n, the odd-/ 
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levels vanish at T =  T e because of the Kronecker 5r, 0 term in the factor 
( k -  1) r+<'/z)tl-(-1)qar,~ in (13). In all cases, only the pure E(k) l term in 
each of the even-/ levels contributes; all E(k) t - rK(k )  r with r4=0 have 
vanishing coefficients (which also annihilate the logarithmic divergence in 
K(k) as k ~  1). The structure (24) may be contrasted with the well-known 
result for (aooann)r c which is a simple monomial oc ~ - "  [and, like the full 
function (aooa,,) itself, is independent of sgn(J)]. 

Much of the value of solvable models derives from the fact that one can 
calculate exact analytic expressions for quantities of physical interest, 
without having to resort to approximation methods. In this spirit we have 
calculated explicit expressions, in terms of the complete elliptic integrals 
E(k) and K(k), for the spin-spin correlation functions (aooa,o) of the 
isotropic d =  2 Ising model for n ~ 6, and have presented the results for 
n ~< 5 here. We have also found an interesting general structural formula for 
these correlation functions. 
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A P P E N D I X  

We list below the ~..#c~(nl_r,reVen' + )(/zk,v~)~ and ~2 TMI ~ ~ J (where k = k > or k<) 
for n = 4 and 5. We have also calculated R 6 but the results are too lengthy to 
present here. They are, of course, available on request. 

n~--. 

T >  

4." 

~.@ (4, + 
4,0 

fi~-(4, +) 
3,1 

~ ( 4 ,  +) 
2,2 

~ ( 4 , + )  
1,3 = 

0,4 

, ~ ( 4 , + )  
2,0 

fi~-(4, +) 
1,1 

.~.(4, +) 
0,2 

,~(4,+) 
0,0 

' =  24(k 4 - 84k3> + 86k3> + 204k> + 49) 

= - 2 8 ( k >  + 1)(3k> + 1)(k2> - 6 k >  - 11) 

-26(k> + 1)(2k4> - 63k3> - 227k2> - 229k> - 59) 

26(k> + 1):(3k> + 5)(7k2> + lSk> + 7) 

24(k> + 1)3(9k3> + 45k2> + 75k> + 31) 

-23(k> + 1)(k2> + 6k> + 1)(4k2> + 9k> + l) 

-24(k> + 1)2(3k> + 1)(7k 2 + 12k> + 1) 

-23(k> + 1)3(9k3> + 27k2> + 15k> + 1) 

2 2 3 k>(k> + 1) 4 
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T< Tc: 

~ ( 4 , - )  
4,0 

~ 4 , ]  , =  

~ ( 4 , - )  _ 
2,2 - -  

0,4 

~ ( 4 , - - )  __  

2 ,0  - -  

~ ( 4 , - - )  - -  
0 , 0  - -  

24(49k 4 + 204k3< + 86k~ - 84k< + 1) 

26(k< + 1)(5k 3 + 53k2< + 71k< - 1) 

25(k< + 1)(k~ + 17k 4 - 20k 3 - 204k  2 - 181k< + 3) 

- 2 6 ( k <  + 1)2(17k3< + 61k2< + 51k< - 1) 

- 2 4 ( k <  + 1)3(9k3< + 45k2< + 43k< - 1) 

- 2 3 k < ( k <  + 1)(kZ< + 6k< + 1)(kZ< + 9k< + 4) 

- 2 6 k < ( k <  + 1)2(4kZ< + 3k< + 1) 

- 2 5 k < ( k <  + 1) 3 

32kZ<(k< + l )  4 

n = 5 :  

,fi• (5) 
1,4 ~ 

0,5 - -  

. ~ ( 5 )  _ 
4 , 0  - -  

27 �9 3(k 2 + 6k + 1)(k 4 - 132k 3 - 250k  2 - 132k + 1) 

26(k 8 - 510k  v - 6542k  6 - 9630k  5 + 14748k 4 

+ 39510k  3 + 24718k  z + 3 2 7 0 k -  29) 

- 2 9 ( k  - + 1)(15k 7 + 259k  6 _ 135k 5 _ 3687k 4 _ 7335k 3 

- 4 8 0 3 k  2 - -  705k + 7) 

- 2 6  �9 3(k + 1)Z(3k v + 72k 6 - 1095k 5 - 6878k  4 

- 13515k 3 - 9756k  2 -  1617k + 18) 

2V(k + 1)3(477k 5 + 2943k  4 + 6498k  3 + 5438k 2 

+ 1 0 4 1 k -  13) 

26(k + 1)4(3k + 1)(3k + 5)(9k 3 + 45k z + 75k - 1) 

25(k 8 + 258k  7 + 904k  6 + 5310k  s + 9582k  4 + 5310k  3 

+ 904k  z + 258k  + 1) 

, ~ 5 , ]  = 26 (k  q_ 1 ) ( 5 1 k  7 -t- 3 9 8 k  6 + 4 1 3 1 k  5 + 9 5 8 2 k  4 + 6 4 8 9 k  3 

+ 1410k 2 + 465k  + 2) 

-~q~(25,~ = 2 5 .  3 ( k  -[- 1 )2 (3k  7 + 4 2 k  6 -}- 1443k 5 + 4502k  4 + 3801k  3 

+ 1054k 2 + 417k  + 2) 

822/38/3-4-4 
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1 , 3  

~ ( 5 )  _ 
0 , 4  - -  

~ ( 5 )  _ 
3 , 0  - -  

27(k + 1)3(234k 5 + 981k  4 + 1044k 3 + 370k 2 + 186k + 1) 

25(k + 1)4(81k 5 + 405k  4 + 522k 3 + 234k 2 + 165k + 1) 

25 �9 3Zk(k + 1)2(k 4 q- 30k 3 + 74k 2 + 30k + 1) 

~ ( 5 )  __ 24 3Zk(k + 1)2(k6 + 13k 5 _ 67k 4 _ 358k  3 _ 505k 2 
2 , 1  - -  

- -  1 6 7 k -  5) 

~ ( 5 )  _ _ 2 5  . 3 Z k ( k +  1)3(53k 4 + 179k 3 + 233k 2 + 77k + 2) 
1 , 2  - -  

• ( 5 )  __ 
0 , 3  - -  

~ 5 )  _ 

2 , 0  - -  

~r (5) _ 
1,1  - -  

~ ( 5 )  _ 
0 , 2  - -  

~ ( 5 )  _ 
1 ,0  - -  

~ 5 )  _ 
0 , 1  - -  

0 , 0  

--24 �9 3Zk(k + 1)4(18k 4 q- 81k 3 + 125k 2 + 47k  + 1) 

- 2 3  �9 3Zk(k + 1)2(k 2 + 6k + 1)(k 4 + 15k 3 + 44k 2 

+ ] sk  + ]) 

--24 �9 32k(k + 1)3(52k 4 q-- 147k 3 + 83k 2 + 21k + 1) 

- 2 3  �9 32k(k + 1)4(18k4 q- 63k 3 + 49k  z + 21k + 1) 

0 

22 . 34k3(k + 1) 6 

2 . 3 4 k 3 ( k  + 1) 6 
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submi t ted  a paper  in which the cri t ical  values  Rn, c are given for n up to 5. 
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